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A B S T R A C T

Structural magnetic resonance imaging (sMRI) is commonly used for the identification of Alzheimer’s disease
because of its keen insight into atrophy-induced changes in brain structure. Current mainstream convolutional
neural network-based deep learning methods ignore the long-term dependencies between voxels; thus, it is
challenging to learn the global features of sMRI data. In this study, an advanced deep learning architecture
called Brain Informer (BraInf) was developed based on an efficient self-attention mechanism. The proposed
model integrates representation learning, feature distilling, and classifier modeling into a unified framework.
First, the proposed model uses a multihead ProbSparse self-attention block for representation learning. This
self-attention mechanism selects the first ⌊ln𝑁⌋ elements that can represent the overall features from the
perspective of probability sparsity, which significantly reduces computational cost. Subsequently, a structural
distilling block is proposed that applies the concept of patch merging to the distilling operation. The block
reduces the size of the three-dimensional tensor and further lowers the memory cost while preserving the
original data as much as possible. Thus, there was a significant improvement in the space complexity. Finally,
the feature vector was projected into the classification target space for disease prediction. The effectiveness of
the proposed model was validated using the Alzheimer’s Disease Neuroimaging Initiative dataset. The model
achieved 97.97% and 91.89% accuracy on Alzheimer’s disease and mild cognitive impairment classification
tasks, respectively. The experimental results also demonstrate that the proposed framework outperforms several
state-of-the-art methods.
1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease that wors-
ens over time and is accompanied by irreversible neuronal damage
with progressive impairment of cognitive functions [1,2]. Mild cog-
nitive impairment (MCI) is the prodromal stage of AD, and patients
in this state have a high probability of developing AD [3]. In recent
years, with the increasing number of patients with AD and MCI, the
need for computer-aided-diagnosis has dramatically increased [4–6].
The structural magnetic resonance imaging (sMRI) technique provides
powerful data to support this need because of its ability to noninva-
sively capture structural changes in the brain caused by the atrophic
process [7,8]. Fan et al. [9] used a support vector machine (SVM) to
classify and predict different disease processes in AD using sMRI data.
Lian et al. [10] used whole-brain sMRI data for AD diagnosis using joint
learning and multiscale feature representation. Kumar et al. [11] used
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transfer learning to classify AD and normal controls (NC) after entropy
slicing to select the most informative sMRI slices. Khatri et al. [12]
used multiple biomarkers obtained from sMRI processing for the clas-
sification of AD and MCI. Odusami et al. [13,14] applied multiple
deep feature extractors to enhance the classification performance of
multiple AD stages and proposed a fine-tuned deep learning network
for further performance improvement. Razzak et al. [15] performed
a feature fusion of different convolutional kernel sizes on sMRI data
for the classification of AD, MCI, and NC. Ashraf et al. [16] used a
transfer learning strategy for neurological disorder detection based on
sMRI data. A large number of similar studies have shown that structural
abnormalities in the brain are closely associated with brain disorders,
and the feasibility of using sMRI data for AD classification has been
demonstrated.
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Table 1
Demographic and clinical information of the dataset.
Type Sex (male/female) Age (mean ± std) MMSE (mean ± std) GDS (mean ± std)

NC 198/126 79.35 ± 5.29 28.96 ± 1.31 0.99 ± 1.22
MCI 239/80 77.21 ± 6.99 26.13 ± 3.16 1.70 ± 1.76
AD 163/153 75.70 ± 7.88 21.88 ± 3.70 1.69 ± 1.76
Fig. 1. The density maps of each indicator in the dataset. (a) Age distribution; (b) MMSE score distribution; (c) GDS distribution. Comparison of the three shows that GDS and
MMSE scores are more clearly distinguished in each subject type, and age is more similarly distributed.
Deep learning methods are gradually becoming mainstream in the
current artificial intelligence field and are dominated by convolutional
neural networks (CNNs) [17,18]. Lee et al. [19] introduced a frame-
work for sMRI classification of AD using AlexNet [20]. Zhang et al. [21]
proposed a lightweight network based on the ResNet architecture [22]
and used sMRI data for AD/NC classification. Ahsan et al. [23] con-
structed a multiple two-dimensional CNN network to learn the local
features of sMRI data for AD classification. Since convolution oper-
ations are performed using fix-sized kernels [24] (e.g., 3 × 3 size
onvolution kernels), this leads to the fact that the learned features
an only focus on local regions of the brain, and distant features
cross brain regions and global features are limited [25]. Therefore,
he improvement of CNNs applied to MRI is hindered.

While CNNs were developing, a model called Transformer caused
sensation in the field of natural language processing (NLP) [26].

he core operation of this model is the self-attention mechanism that
mphasizes the dependencies between long sequences. Thus, it is su-
erior to learning global representation. The excellent performance
f this mechanism has led many researchers to attempt its migra-
ion to the computer vision (CV) domain. For example, Detection
ransformer (DETR) [27] uses Transformer for object detection; Vision
ransformer (ViT) [28] introduces the idea of segmenting an image

nto several patches for processing, with outstanding classification
esults after training on a large dataset; Swin-Transformer [29] uses a
ocal self-attention mechanism on top of ViT to reduce the calculation
omplexity; Transformer-iN-Transformer (TNT) [30] models both local
nd global features of an image to retain spatial information. How-
ver, because of the 𝑂

(

𝑛2
)

complexity of the calculations within this
echanism [31], a huge computational overhead would be incurred

f it is directly applied to MRI data. Therefore, the application of the
elf-attention mechanism in MRI is somewhat limited.

To overcome these limitations, the Brain Informer (BraInf) model
s proposed in this study for efficient feature encoding and data clas-
ification of MRI data. First, considering the three-dimensional tensor
ata, a feature extraction strategy is designed to convert the raw
hree-dimensional MRI data into a two-dimensional feature matrix.
econd, to lower the quadratic complexity of the original self-attention
echanism, the multihead ProbSparse self-attention mechanism [32]

s used in the proposed framework to improve the operation efficiency.
he mechanism selects only the most informative first ⌊ln𝑁⌋ elements

from the perspective of probability sparsity to represent overall fea-
tures. Therefore, the computational complexity is reduced, and high
performance is guaranteed simultaneously. Third, to ensure network
depth while maintaining the memory cost at a low level, structural
distilling is proposed which is a module that merges tensor patches to
2

gradually reduce the size of the feature map. Finally, the output from
the framework was passed into the classifier for disease classification.
We validated the proposed framework on the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset and demonstrated the superiority
of the method in terms of algorithm performance and various medical
metrics such as accuracy, specificity, sensitivity, and precision.

The major contributions of the study are as follows:

1. The proposed structural distilling applied the idea of patch
merging into the distilling operation without maxpooling, which
reduces the information loss in the downsampling process and
improves performance. Thus, it lowers the space cost for cal-
culation while preserving as many features as possible, thereby
making the network deeper.

2. The proposed architecture significantly reduces the computa-
tional complexity compared with the original self-attention mod-
els, thus making larger-scale models trainable on large datasets.

3. This study uses original three-dimensional sMRI data, which is a
data-driven method that does not rely on prior knowledge, and
its accuracy can compete with state-of-the-art methods.

The remainder of this paper is organized as follows. Section 2
briefly introduces the datasets used in this study. Section 3 provides
a detailed description of the proposed framework. Section 4 presents
various comparative experiments on the model in detail, as well as a
discussion of the experimental results. Finally, Section 5 concludes the
study.

2. Materials

In this section, we introduce the MRI dataset and the preprocessing
pipeline used in this study.

2.1. Studied dataset

The dataset used for this study was obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI, available at http://adni.loni.
usc.edu/) database. The ADNI provides scientists worldwide with a
publicly available AD database to enable the early diagnosis of AD
and the exploration of biological indicators of the disease [33]. In
this study, we selected 324 NC, 319 MCI, and 316 AD samples. All
MRI data were obtained using 3T scanning equipment, and these
data were T1-weighted images with magnetization-prepared rapid-
acquisition gradient-echo sequences. The sequence parameters were
as follows: field of view (FOV) = 208 × 240 × 256 mm, resolution =

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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Fig. 2. Overall flowchart of the BraInf architecture. (A) Feature extraction phase. The original three-dimensional sMRI data is first patch partitioned with fixed patch size. The
blocks are positional encoded. After adding the original block with positional encoded information, each block is flattened into a vector. All the vectors are concatenated into a
matrix as the feature matrix. (B) Multihead ProbSparse self-attention block. The feature matrix is formed into query, key, and value matrices after multiple linear projections, and
the ProbSparse self-attention is computed using the formula in (B). The multilayer perceptron is applied for further representation learning of the data, followed by a residual
connection. (C) Structural distilling layer. The feature matrix is first reconstructed into three-dimensional blocks. Then Conv3d (⋅), ELU (⋅), and PatchMerge (⋅) are applied to obtain
the down-sampled three-dimensional block. It reduced the feature scale and lowered the space complexity of the model. (B) and (C) can be stacked multiple times, to make the
network deeper. (D) Classifier (Feedforward neural network). The subject is classified as healthy or patient after passing the feature vector into the classifier.
1 × 1 × 1 mm, repetition time (TR) = 2,300 ms, and inversion time (TI)
= 90 ms.

Demographic and clinical characteristics, including sex, age, Mini-
Mental State Examination (MMSE) scores, and Geriatric Depression
Scale (GDS), are shown in Table 1. The density maps for each indicator
in the dataset is shown in Fig. 1. The ages of the three subject types
were distributed similarly. The GDS and MMSE scores of the NC group
showed low variance, whereas the other two groups had relatively high
variance.

2.2. Data preprocessing

First, all raw sMRI data were relocated to the midpoint of the
anterior commissure (AC) - posterior commissure (PC) line. Then, we
used the computational anatomy toolbox (CAT12, available at http:
3

//www.neuro.uni-jena.de/cat/) for SPM [34], which covers a variety of
morphometry methods, such as voxel-based morphometry (VBM) [35]
and surface-based morphometry (SBM) [36]. The following steps were
performed in our preprocessing steps: (1) non-brain tissue removal,
including the skull and neck, etc. (2) normalization to the EPI template,
(3) modulation, and (4) spatial smoothing using a Gaussian filter of
8 mm full-width at half-maximum (FWHM).

3. Methods

The overall architecture proposed in this study is illustrated in
Fig. 2. First, a patch partition operation is performed on the MRI
data [28], which equally divides the original image into multiple
blocks. Each block is then linearly transformed, and the original posi-
tion encoding is added. Finally, these blocks were sequentially arranged

http://www.neuro.uni-jena.de/cat/
http://www.neuro.uni-jena.de/cat/
http://www.neuro.uni-jena.de/cat/
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into a matrix and passed into the main model as the feature matrix of
the sample. The feature matrix is first passed to the multihead Prob-
Sparse self-attention block [32]. Compared to traditional deep learning
methods, the self-attention mechanism can effectively extract the corre-
lation between long-range sequences and capture more comprehensive
features [28]. The output of the self-attention block was passed to the
multilayer perceptron for further representation learning [37]. After
the residual connection, it is followed by the structural distilling layer,
which is a computational module that reduces the size of the feature
map while retaining the key features of the original data, thereby
reducing the computational cost. The structural distilling layer en-
ables the model to handle large-scale input features. The self-attention
mechanism and structural distilling layer can be superimposed multiple
times [26], allowing a deeper model structure. Finally, the output of the
model was passed into the classifier for disease prediction.

3.1. Related work

3.1.1. Self-attention mechanism
Vaswani et al. [26] first proposed the self-attention mechanism.

In the field of NLP, it is usually implemented with recurrent neural
networks [38], also known as encoder–decoder structures [39]. Because
this type of model uses sequence-by-sequence processing, it is difficult
to extract the long-range dependencies. In addition, long sequences lead
to ‘‘gradient vanishing’’ or ‘‘gradient explosion’’ during training, which
makes it difficult for the network to converge. A later study attempted
to incorporate the attention mechanism into the encoder–decoder struc-
ture [40]. This study used weighted summation to compute attention
so that the neurons in the decoder focused on the key parts of the
encoder content. Although the performance of the model was improved
by the attention mechanism to some extent, the backbone network
was still a recurrent neural network, and the fundamental defects of
the encoder–decoder structure were still not solved. The emergence
of the self-attention mechanism has solved the shortcomings of the
encoder–decoder structure and has become a mainstream approach for
NLP.

However, the biggest problem with the self-attention mechanism
is its quadratic computational complexity, which makes it difficult to
handle large amounts of input data. Some studies have attempted to
solve this issue, but they still have limitations. Sparse Transformer [41]
reduces the time complexity to 𝑂

(

𝑛
√

𝑛
)

based on sparse factoriza-
ions of the attention matrix, but the efficiency improvement is lim-
ted. Reformer [42] used a locality-sensitive hashing technique to re-
uce complexity as well, but it shows a performance improvement
nly for extremely long input sizes. Transformer-XL [43] further pro-
osed a segment-level recurrence mechanism that enables longer-term
ependency but is not conducive to breaking the efficiency bottle-
eck. The problems of high computational complexity and performance
ottleneck breakthroughs remain unresolved.

.1.2. Distilling operation
In addition to the computational complexity problem, an other issue

f deep learning models based on the self-attention mechanism is the
emory bottleneck and feature redundancy. In self-attention models,
ultiple self-attention blocks are typically stacked to deepen the model

tructure [26]. However, stacking attention layers causes redundancy
n the feature representation [32]. In addition, self-attention calculates
ach of the two input tokens, thus requiring 𝑂

(

𝑛2
)

space complexity.
he memory usage of 𝑂

(

𝐽 ⋅ 𝑛2
)

is required to superimpose 𝐽 times the
elf-attention blocks. In MRI processing, it can easily yield a large 𝑛
alue. Therefore, owing to the limitation of memory, a large 𝐽 value

cannot be set in practice, resulting in a shallow model and an inability
to extract deeper features of the data. The distilling operation [32]
solves the above issues: (1) Distilling refines the output features of
self-attention. The refined feature map contains the most informative
sequences, thus reducing the performance degradation caused by the
4

redundancy of internal calculations. (2) By reducing a certain amount
of sequence information by distilling, the model can handle data with
large 𝑛 values well. This made it possible to build a deeper model.

owever, it does not consider the three-dimensional MRI structure. The
peration will cause the destruction of the three-dimensional structure
f it is applied directly to the MRI data. Therefore, the feature rep-
esentations of the MRI data are less informative. Furthermore, the
axpooling operation inside the distilling may cause data loss and

educe the feature learning capability of the model to some extent.

.2. Feature extraction

.2.1. Patch partition
In this study, 𝑋𝑝 ∈ R𝐿×𝑊 ×𝐻 denotes the original three-dimensional

MRI image, and 𝑃 ∈ R𝑃𝐿×𝑃𝑊 ×𝑃𝐻 denotes a patch tensor. First, we
ivide the original image into 𝑁 patches, where 𝑁 = 𝐿

𝑃𝐿
⋅ 𝑊
𝑃𝑊

⋅ 𝐻
𝑃𝐻

.
Then, all patches are flattened and transformed into vectors 𝑥𝑖𝑝 ∈ R1×𝑑 ,
where 𝑖 represents the 𝑖th patch and 𝑑 = 𝑃𝐿 ⋅𝑃𝑊 ⋅𝑃𝐻 is the dimension of
the patch tensor. Finally, we concatenate all patch vectors to construct
a matrix 𝑋𝑝 ∈ R𝑁×𝑑 for further steps.

3.2.2. Positional encoding
One drawback of using the self-attention mechanism in processing

sequential data is that all tokens are passed into the model simultane-
ously, resulting in an inability to retain the positional information of
each token. Therefore, it is crucial to encode the position information
for each token. For the sMRI data, each input token is an individual
patch after the patch partition. Here, the position information is en-
coded using sine and cosine functions to label each patch and construct
the position relationship between them [26], defined as:

𝑃𝐸(𝑝𝑜𝑠,2𝜆) = sin
(

𝑝𝑜𝑠∕100002𝜆∕𝑑
)

, (1)

𝑃𝐸(𝑝𝑜𝑠,2𝜆+1) = cos
(

𝑝𝑜𝑠∕100002𝜆∕𝑑
)

, (2)

where 𝑝𝑜𝑠 denotes the position of the current patch, 𝜆 denotes the 𝜆-th
dimension and 𝑑 denotes the patch dimension. Each dimension of the
position encoding corresponds to a sine curve with a waveform varying
from 2𝜋 to 10000 ⋅ 2𝜋. The trigonometric function is used to describe
the position information because it can convert the relative positions
between the patches into absolute positions, that is, each 𝑃𝐸𝑝𝑜𝑠+𝑘 can
be obtained by a linear transformation of 𝑃𝐸𝑝𝑜𝑠.

Finally, the inputs are fused with the position information to obtain
the final feature matrix:

𝑋 = 𝑋𝑝 + 𝑃𝐸, 𝑃𝐸 ∈ R𝜆×𝑑 , (3)

where 𝑋 represents the feature matrix to be input into the model after
patch partitioning and positional encoding.

3.3. Multihead ProbSparse self-attention block

Zhou et al. [32] proposed the ProbSparse self-attention mechanism
to address some of the shortcomings of the original self-attention mech-
anism. Most notably, it was designed to solve the high computational
complexity from 𝑂(𝑛2) to 𝑂(𝑛 log 𝑛). The performance of this mechanism
in long sequence prediction tasks is significantly improved compared
with that of conventional self-attention. The flow of the ProbSparse
self-attention mechanism is illustrated in Fig. 3. Suppose that 𝐿 is the
length of the sequence and 𝑑 is the dimension of each sequence. The
input matrix 𝑋 ∈ R𝐿×𝑑 is first transformed into three different matrices
by three different linear layers: query (𝑄), key (𝐾), and value (𝑉 ).

𝑄 = 𝑋𝑊𝑞 ,

𝐾 = 𝑋𝑊𝑘, (4)

𝑉 = 𝑋𝑊𝑣,
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Fig. 3. ProbSparse self-attention mechanism. The input matrix is transformed from
hree trainable matrices into three matrices 𝑄, 𝐾, 𝑉 . The top-𝑘 queries with the highest

influence are selected for the 𝑄 matrix, and the other queries are replaced by zero
vectors. The blank part of Query’ (𝑄) represents the filtered queries, and the retained
art remains unchanged. Finally, it is multiplied with the 𝑉 matrix to obtain the output
f ProbSparse self-attention.

here 𝑊𝑞 , 𝑊𝑘 and 𝑊𝑣 are trainable weight matrices, and 𝑊𝑞 ∈ R𝑑×𝑑𝑘 ,
𝑘 ∈ R𝑑×𝑑𝑘 and 𝑊𝑣 ∈ R𝑑×𝑑𝑣 . We then calculate the similarity

between each query in 𝑄 and each key in 𝐾 using the dot-product. The
ProbSparse self-attention utilizes probability sparsity to select the most
informative queries for the computation. The probability distribution
of the attention map forms a ‘‘long-tail’’ distribution, that is, only a
few elements in the attention map play a decisive role. The ‘‘active’’
queries tend to contain these key elements, while other ‘‘lazy’’ queries
do not. We eliminate these ‘‘lazy’’ queries (mask as 0) and retain the
Top-𝑘 informative queries. The new query matrix 𝑄 was used for the
following self-attention calculation:

For ease of presentation, we use 𝑞𝑖, 𝑘𝑖 to represent the 𝑖th row, that
s, the 𝑖th query and the 𝑖th key, respectively, in the 𝑄, 𝐾 matrices.
ccording to [44], the probability form of the attention 𝑞𝑖 to 𝑘𝑗 is

defined as:

Attn
(

𝑞𝑖, 𝑘𝑗
)

= 𝑝(𝑘𝑗 |𝑞𝑖) =
exp

(

𝑞𝑖𝑘
⊺
𝑗

√

𝑑𝑘

)

∑

𝑙 exp
(

𝑞𝑖𝑘
⊺
𝑗

√

𝑑𝑘

) . (5)

Based on this probability form, it is possible to compare 𝑝
(

𝑘𝑗 |𝑞𝑖
)

ith the uniform distribution, 𝑞(𝑘𝑗 |𝑞𝑖) =
1
𝐿 . If 𝑝(𝑘𝑗 |𝑞𝑖) approximates a

niform distribution, it means that 𝑝𝑖 is likely to be a ‘‘lazy’’ query. We
sed the Kullback–Leibler divergence to measure the similarity of two
5

(

Fig. 4. Diagram of the multi-head self-attention mechanism. The input matrix is passed
into multiple self-attention mechanisms to learn the representations of the data in
parallel. The components are concatenated after computation and passed into a linear
layer as the final output. The ℎ in the figure indicates the number of heads.

probability distributions, and the definition of the importance of the 𝑖th
query is defined as:

𝑀(𝑞𝑖, 𝐾) = ln
𝐿
∑

𝑗=1
exp

(

𝑞𝑖𝑘
⊺
𝑗

√

𝑑𝑘

)

− 1
𝐿

𝐿
∑

𝑗=1

𝑞𝑖𝑘
⊺
𝑗

√

𝑑𝑘
. (6)

To simplify the calculation, the above equation was modified in [32]
as:

𝑀(𝑞𝑖, 𝐾) = max
{

𝑞𝑖𝑘
⊺
𝑗

√

𝑑𝑘

}

− 1
𝐿

𝐿
∑

𝑗=1

𝑞𝑖𝑘
⊺
𝑗

√

𝑑𝑘
. (7)

According to this definition, the Top-𝑘 queries with the highest values
are retained, and the rest are filled with zeros to obtain the 𝑄 matrix.
Subsequently, a regular self-attention calculation was performed.

Attn(𝑄,𝐾) = softmax
(

𝑄𝐾⊺

√

𝑑𝑘

)

, (8)

ProbSparse(𝑄,𝐾, 𝑉 ) = Attn(𝑄,𝐾)𝑉 . (9)

his process is described in Algorithm 1. The ‘‘multihead’’ approach
f self-attention further enhances the ability to learn representations
f the data, as shown in Fig. 4. Multihead self-attention is essentially
multi-directional learning of the input matrix with multiple sets

f different self-attentions. These multiple sets of self-attention tasks
o not interfere with each other. These self-attentions are computed
n parallel, allowing the model to improve its performance with low
omputational complexity. After computing each attention head, these
utputs are concatenated and passed into the final linear layer as the
utput of the multi-head self-attention mechanism. The above process
an be described as follows:

𝑃𝑆𝐴(𝑄,𝐾, 𝑉 ) = Concat(ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 , (10)

here ℎ𝑒𝑎𝑑𝑖 = ProbSparse(𝑋𝑊 𝑄
𝑖 , 𝑋𝑊 𝐾

𝑖 , 𝑋𝑊 𝑉
𝑖 ) and 𝑊 𝑄, 𝑊 𝐾 , 𝑊 𝑉 ,

𝑂 are trainable matrices. Multihead self-attention prevents partial
nformation loss due to single-head mapping and is therefore more
ikely to yield better training results.

.4. Multilayer perceptron

Self-attention is immediately followed by a multilayer perceptron
MLP). The mere superposition of self-attention causes the model to
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Fig. 5. Structural distilling operation. The output of the self-attention and MLP will be used as the input of distilling layer. The input matrix are first reconstructed to MRI patches,
and then Conv3D and ELU activation are performed for each patch separately. In downsampling, more feature information is preserved by using patch merging for each four
adjacent patches. The MRI patches after patch merging are then flattened and concatenated into a matrix, followed by a linear mapping layer as the output of distilling.
Algorithm 1 ProbSparse Self-attention Mechanism

Require: Tensor 𝑄, 𝐾, 𝑉 ∈ R𝐿×𝑑

1: Set hyperparameters 𝑘 = ln𝐿, 𝑢 = 𝐿 ln𝐿
2: Randomly select 𝑢 vectors from 𝐾 as 𝐾
3: Calculate 𝑆 = 𝑄𝐾
4: Calculate max(𝑆 𝑖) − average(𝑆𝑖) for every row in 𝑆
5: Sort in descending order and select Top-𝑘 as 𝑄
6: Calculate Attn = softmax(𝑄𝐾⊺∕

√

𝑑)𝑉
7: Replace Attn according to original indices
Output: Attention Map 𝑃𝑟𝑜𝑏𝑆𝑝𝑎𝑟𝑠𝑒𝐴𝑡𝑡𝑛

converge to a rank-1 matrix, resulting in identical tokens. The in-
crease in non-linearity due to the multilayer perceptron allows the
rank collapse phenomenon to be resolved [37]. The multilayer percep-
tron consists of two layers: linear transformation and ReLU nonlinear
activation.

𝑋 = ReLU(𝑊2(ReLU(𝑊1𝑋))), (11)

where 𝑊1 and 𝑊2 are trainable linear transformation matrices, and
ReLU(⋅) represents the ReLU non-linearity activation function. Thus,
the ProbSparse self-attention mechanism and multilayer perceptron
together form the multihead ProbSparse self-attention block.

3.5. Residual connection

One of the main problems with deep neural networks is gradient
vanishing. As the model layers deepen, the gradient during training
is likely to converge to zero, making it difficult to train the model
effectively. This can cause a performance bottleneck in the model.
He et al. [22] proposed a novel residual connection architecture that
breaks the performance bottleneck and makes it more effective for
training deeper models. In the proposed BraInf architecture, the math-
ematical expression for the residual connection is defined as:

𝑋′ = MLP(Attn(𝑋)) +𝑋, (12)

where Attn (⋅) is the self-attention block, and MLP (⋅) is the multilayer
perceptron. Residual connection is applied to alleviate the gradient van-
ishing problem and thus enhance the representation learning capability
of the model.
6

3.6. Structural distilling operation

The conventional distilling process [32] is defined as follows:

𝑋𝑗+1 = MaxPool(ELU(Conv1d(𝑋𝑗 ))), (13)

where 𝑋𝑗 is the output of the MLP. Conv1d (⋅) performs a one-dimen-
sional convolution along the sequence dimension and then activates it
using the ELU (⋅) function [45]. MaxPool (⋅) achieves down-sampling of
the sequence and preserves the key sequence information. The length
of the sequence is reduced from 𝐿 to 𝐿∕2 after distilling.

Because the original distilling destroys the three-dimensional struc-
ture of the MRI data and the information loss caused by the max-
pooling operation, a structural distilling operation is proposed here.
Fig. 5 shows the detailed process of the proposed structural distilling
operation. The feature matrix was passed to the distilling block after
MLP. Because each row in the sMRI feature matrix represents a three-
dimensional MRI patch, we first reconstructed the feature matrix 𝑋𝑗
into patches. Next, a three-dimensional convolution operation was
applied to each MRI patch for further representation learning. The
kernel size was set to (3,3,3) with a padding of 1, followed by ELU
activation. Because MaxPool(⋅) in the conventional approach causes
data loss and does not maximize feature representations, the patch
merge concept [29] is applied here. It makes good use of all the spatial
features of the data without causing data loss and achieves feature
sequence down-sampling simultaneously. Each of the four adjacent
patches was merged. The new patches are then flattened and concate-
nated into a matrix. Finally, a linear layer is applied for the dimensional
transformation as the output of the structural distilling. This process
can be described by the following equation:

𝑋′ = PatchMerge
(

ELU
(

Conv3d
(

[𝑋𝑗 ]ReCS
)))

, (14)

𝑋out = Flatten(𝑋′) ⋅𝑊out, (15)

where 𝑋𝑗 ∈ R𝐿×𝑑 , Flatten
(

𝑋′) ∈ R
𝐿
4 ×4𝑑 , 𝑊out ∈ R4𝑑×𝑑 and the final

output 𝑋out ∈ R
𝐿
4 ×𝑑 . [⋅]ReCS denotes the reconstruction operation that

converts the two-dimensional feature matrix into three-dimensional
patches. The sequences of the feature matrix after distilling were re-
duced by a quarter while retaining the key sequence information. It
enables the model to increase the depth of the network as much as
possible with limited computational space to ensure the representation
capability of the model.
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Table 2
Model parameter details.
Model block Calculation Parameters N (Number)

Input – 3D Tensor (61 × 73 × 61) 1

Feature
extraction

Patch partition Patch size: (5 × 3 × 5) 1

Positional
encoding

𝑃𝐸(𝑝𝑜𝑠,2𝜆) = sin
(

𝑝𝑜𝑠∕100002𝜆∕𝑑
)

1
𝑃𝐸(𝑝𝑜𝑠,2𝜆+1) = cos

(

𝑝𝑜𝑠∕100002𝜆∕𝑑
)

Flatten & Concatenate –

Feature matrix size: (3456 × 75) –

BraInf main
architecture

Self-attention
block

Multihead ProbSparse self-attention:
𝑛heads = 8

3Multilayer perceptron: 𝑛neurons = 4 × 75

Structural
distilling

Reconstruct
Conv3D (kernel size: (3 × 3 × 3))
ELU activation
Patch merge & flatten

Flatten

Classification Feed-Forward
network

Fully connected layer (𝑛neurons = 1024)

1
ReLU activation
Fully connected layer (𝑛neurons = 256)
ReLU activation
Fully Connected Layer
(𝑛neurons = 𝑛classes)

Output – Predicted label –
3.7. Training details

The details of each computational block parameter are presented in
Table 2. Our model was trained on the following platforms: AMD EPYC
7302 16-core Processor, GeForce RTX 3090 with 23G memory, 251G
RAM.

4. Results and discussion

In this study, two binary classification tasks were set to evaluate
model performance: (1) NC vs. AD and (2) NC vs. MCI. To make
the results more robust, all models were trained using 10-Fold cross-
validation. All samples in the dataset were divided into ten subsets, nine
of which were selected each time as the training set and the remaining
one as the test set. After training ten times, the mean and variance of
each metric were calculated for the final evaluation.

4.1. Overall performance

4.1.1. Performance comparison between different machine learning meth-
ods

First, we compared various machine-learning models with the pro-
posed BraInf architecture. The mainstream image classification models
thus far can be divided into the following three categories: (1) Basic
machine learning models. These machine-learning-based classification
models have better classification results on relatively simple datasets
and require a shorter time to train; (2) Convolution-based deep learning
models. CNNs are among the most popular methods for processing
image data. The classification accuracies of the most advanced CNNs
so far have exceeded human accuracy. (3) Self-attention classification
models. Among these three classification approaches, we selected a
few models with the best results. The basic machine learning models
include (1) Gaussian naive Bayes (GNB) [46], (2) logistic regression
(LR) [47], (3) decision tree (DT) [48], and (4) adaptive boosting
(AdaBoost) [49]. The CNN-based models included (5) VGG16 [50],
(6) VGG19 [50], and (7) ResNet-18 [22]. Self-attention-based models
include (8) Vision Transformer (ViT) [28], (9) Reformer [42], and (10)
the proposed BraInf architecture. The feature extraction of different
models varied based on the model architecture. For basic machine-
learning-based approaches, we flattened the MRI data into a vector as
the input. For the CNN-based models, the original three-dimensional
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MRI data were used, and all the operations within the model were
replaced with the corresponding three-dimensional forms. The input of
the self-attention-based models is described in Section 3.3.

All models were validated on both AD/NC and MCI/NC classifi-
cation tasks, and the classification performance was evaluated using
four metrics: accuracy (ACC), sensitivity (SEN), specificity (SPE), and
precision (PRE). Performance comparisons of each model in the two
classification tasks are given in Table 3, Fig. 6, Table 4 and Fig. 7,
respectively. The receiver operating characteristic (ROC) curves for the
CNN-based and self-attention-based deep learning models are shown in
Fig. 8.

In general, self-attention-based models have the best overall classifi-
cation performance, followed by CNN-based deep learning models. The
basic machine-learning models performed the worst. Due to the high
dimensionality of MRI data, it is difficult for basic machine learning
models to learn the representations of this particularly complex data,
so the overall performance is not very impressive, with an average
classification accuracy, sensitivity and specificity of 60.91%, 55.58%,
and 66.50% in NC and AD classification tasks, and 58.36%, 58.47%,
and 58.43% in NC and MCI, respectively. CNNs further improve the
representation learning ability and exhibit excellent performance espe-
cially on a grid-like topology. Because MRI data are three-dimensional
tensors, CNNs can also perform well on this data modality. The av-
erage accuracy, sensitivity, and specificity of the three CNNs in our
experiments were 83.02%, 80.74%, and 85.39% for NC and AD, and
78.38%, 72.74%, and 83.74% for NC and MCI, respectively. Finally,
self-attention-based models further improve performance because of
their better ability to learn the global features of the data. The average
accuracy, sensitivity, and specificity were 96.62%, 95.62%, and 97.56%
for NC and AD, and 88.12%, 88.23%, and 88.07% for NC and MCI,
respectively. It can be demonstrated that these self-attention models
are superior to the machine learning and CNN-based approaches. For
both classification tasks, the comprehensive performance of the BraInf
model in this study was the best, and our model had the highest area
under the curve (AUC), as shown in Fig. 8. This indicates that the model
can effectively learn the representations of the MRI data.

Furthermore, a statistical analysis was performed to discuss the ef-
fectiveness of the proposed model. To compare the classification perfor-
mance of several different models, a non-parametric Friedman test [51]
was conducted to verify the significant differences in the various model
performances. Subsequently, the post-hoc Wilcoxon method [52] was
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Table 3
NC/AD classification results of different models.
Classification
framework

Model ACC (mean ±
std, %)

SEN (mean ±
std, %)

SPE (mean ±
std, %)

PRE (mean ±
std, %)

Machine learning
classification
methods

GNB 54.78 ± 6.99 41.30 ± 8.43 68.84 ± 12.39 57.65 ± 12.77
LR 56.18 ± 5.00 55.61 ± 8.26 55.82 ± 6.15 55.41 ± 7.20
DT 60.86 ± 7.24 58.10 ± 7.98 63.99 ± 11.95 62.34 ± 8.52
AdaBoost 71.82 ± 6.79 67.30 ± 12.19 77.33 ± 8.56 74.40 ± 10.48

CNN-based deep
learning methods

VGG16 86.25 ± 4.98 88.35 ± 4.12 84.20 ± 7.47 84.83 ± 6.64
VGG19 83.91 ± 5.46 84.12 ± 7.41 83.96 ± 6.46 83.82 ± 6.32
ResNet-18 78.91 ± 4.49 69.74 ± 8.33 88.00 ± 7.77 85.83 ± 6.97

Attention-based
deep learning
methods

ViT 95.47 ± 2.56 93.25 ± 4.76 97.54 ± 1.84 97.33 ± 2.03
Reformer 96.41 ± 2.10 95.86 ± 4.45 96.98 ± 2.33 96.79 ± 2.45
BraInf 97.97 ± 1.41 97.74 ± 2.19 98.17 ± 2.85 98.16 ± 2.68
Fig. 6. Box plots of all metrics for each model in NC/AD classification. Basic machine learning approaches (GNB, LR, DT and AdaBoost) performed worse than the other two
types of models in general. AdaBoost performed the best among them. The performance of CNN-based models (VGG16, VGG19 and Resnet18) is improved over traditional machine
learning models. The self-attention-based models (ViT, Reformer and BraInf) performed best in general. In this classification task, our BraInf architecture performs best.
used to make significant comparisons of the performance between the
models. The statistical results are visualized using a critical difference
diagram [51], as shown in Fig. 9. It can be observed that the BraInf
model has the highest average ranking in both the AD/NC and MCI/NC
classification tasks. In addition, the classification performance of the
BraInf model is significantly different from that of all the other models,
which proves the superiority of the proposed architecture.

4.1.2. Performance comparison with state-of-the-art methods

To validate the superiority of the proposed architecture, it was
compared with recent advanced methods for the classification and
diagnosis of Alzheimer’s disease. The results are presented in Table 5.
A direct comparison of the accuracy of the models is not the most
reasonable method because of some differences between the amount
of data used, modality of the data, and feature extraction methods,
but it does allow for a rough comparison to some extent. In both clas-
sification tasks, the proposed architecture showed results comparable
to those of the current state-of-the-art architecture. This indicates that
the self-attention mechanism can substantially outperform convolution-
based deep learning methods owing to its superior ability to capture
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long-range dependencies.
4.2. Ablation study of the proposed framework

The two key blocks of the proposed BraInf architecture are mul-
tihead ProbSparse self-attention and structural distilling. In this sec-
tion, we describe the following ablation studies to demonstrate the
importance of the blocks proposed in this study.

4.2.1. Improvement of self-attention computational complexity
As mentioned in Section 3.3, the ProbSparse self-attention mecha-

nism reduces the time complexity from 𝑂
(

𝑛2
)

to 𝑂 (𝑛 log 𝑛) compared
with the original method. This results in significant performance im-
provement when dealing with large-scale inputs. Both the time and
memory usage were evaluated for these two self-attention mechanisms
in comparison.

For sMRI data, the length of the sequence can be changed by
different patch sizes; the smaller the patch size, the more sequences
are generated, and vice-versa. A change in patch size also leads to a
change in the sequence dimension. Various patch sizes also lead to
changes in sequence dimensions. The effect of different patch sizes on
the computation time was validated in our experiments. To compare
only the effects of the attention mechanisms, the distilling layer was
removed from the model, and the rest (multilayer perceptron, structure
of feedforward neural network, etc.) was kept the same for both types
of models.

The time and memory usage of the two self-attention mechanisms

for different sequence lengths are presented in Table 6 and Fig. 10,
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Table 4
NC/MCI classification results of different models.
Classification
framework

Model ACC (mean ±
std, %)

SEN (mean ±
std, %)

SPE (mean ±
std, %)

PRE (mean ±
std, %)

Machine learning
classification
methods

GNB 53.28 ± 3.74 57.55 ± 6.55 49.40 ± 6.12 52.98 ± 6.74
LR 52.33 ± 5.75 52.59 ± 12.33 51.69 ± 4.23 51.28 ± 9.77
DT 60.07 ± 6.27 60.26 ± 8.88 59.94 ± 8.70 59.84 ± 8.36
AdaBoost 67.76 ± 3.52 63.46 ± 7.90 72.68 ± 7.46 69.47 ± 9.89

CNN-based deep
learning methods

VGG16 81.66 ± 5.92 77.04 ± 8.34 86.02 ± 6.40 84.06 ± 7.63
VGG19 76.51 ± 7.93 76.96 ± 9.17 75.58 ± 16.44 76.97 ± 9.97
ResNet-18 76.96 ± 6.08 64.22 ± 10.11 89.63 ± 6.27 85.95 ± 8.55

Attention-based
deep learning
methods

ViT 85.38 ± 6.24 82.56 ± 7.31 88.27 ± 7.71 87.15 ± 8.54
Reformer 87.10 ± 5.68 91.47 ± 4.94 82.93 ± 9.96 84.48 ± 8.50
BraInf 91.89 ± 7.22 90.66 ± 7.78 93.01 ± 8.43 92.69 ± 8.21
Fig. 7. Box plots of all metrics for each model in NC/MCI classification. Similar to NC/AD classification, conventional machine learning models showed low accuracy compared
o other approaches. Self-attention-based architectures still performed best.
Fig. 8. ROC curve of CNN-based and self-attention-based models on two classification tasks. We use area under the curve (AUC) to measure the overall performance of the model.
Larger area represents better performance. (a) ROC curve of AD/NC classification task. (b) ROC curve of MCI/NC classification task.
respectively. It can be observed that as the sequence length 𝐿 increases,
the growth in training time and memory usage of dot-product self-
attention is much larger than that of ProbSparse self-attention. The
9

growth of dot-product shows a quadratic increase, while the growth
of ProbSparse self-attention is flatter, thus proving that the ProbSparse
mechanism can be well applied to data with a larger sequence size.
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Fig. 9. Critical difference diagram of model performance on different classification tasks. Models with no significant difference in classification performance are connected by a
short horizontal line. The number next to the model represents the average ranking of the corresponding model. Small values represent high ranking, which also represents better
classification performance. (a) Diagram of AD/NC classification task. (b) Diagram of MCI/NC classification task.
Table 5
Performance comparison with state-of-the-art methods.
Methods Subjects

(NC/MCI/AD)
Modality NC/AD classification NC/MCI classification

ACC (%) SEN (%) SPE (%) ACC (%) SEN (%) SPE (%)

Lian et al. (2020) [10] 429/-/358 MRI 90.3 82.4 96.5 – – –
Feng et al. (2020) [53] 200/280/200 MRI 94.2 96.6 92.4 84.6 89.7 77.5
Liu et al. (2020) [54] 119/233/97 MRI 88.9 86.6 90.8 76.2 79.5 69.8
Lin et al. (2021) [55] 707/-/649 MRI, PET 89.3 82.7 96.5 – – –
Ning et al. (2021) [56] 206/385/229 MRI, PET 96.9 95.7 98.0 82.1 87.1 72.3
Divya et al. (2021)
[57]

347/558/171 MRI 96.8 92.8 98.8 89.4 95.2 80.1

Kang et al. (2021) [58] 229/382/187 MRI 90.4 93.9 83.8 72.4 74.7 84.4
Abdelaziz et al. (2021)
[59]

226/226/186 MRI, PET, SNPs 98.2 97.8 98.8 93.1 92.7 93.6

Odusami et al. (2021)
[14]

25/13/25 Functional MRI 80.8 91.8 83.9 92.2 90.2 94.2

Shanmugam et al.
(2021) [60]

162/228/277 MRI 94.1 90.6 95.2 96.8 83.3 99.0

Goenka et al. (2022)
[61]

475/224/70 MRI 98.4 94.0 – 97.7 96.0 –

Odusami et al. (2022)
[13]

25/13/25 MRI 98.2 ACC, 98.1 SEN, 98.1 SPE (NC/AD/MCI)

Li et al. (2022) [62] 330/299/299 MRI 93.2 95.0 89.8 80.4 83.2 78.6

Proposed method BraInf 324/316/319 MRI 98.0 97.7 98.2 91.9 90.1 93.0
Table 6
Time usage and memory usage of two self-attention mechanisms.
Patch size (𝐿, 𝑑) Dot-product attention model ProbSparse attention model

Time (s) (mean
± std)

Memory (MiB)
(mean ± std)

Time (s) (mean
± std)

Memory (MiB)
(mean ± std)

[5 5 5]
(𝐿 = 2016, 𝑑 = 125)

0.398 ± 0.004 85.173 ± 1.404 0.492 ± 0.018 29.076 ± 1.065

[5 3 5]
(𝐿 = 3456, 𝑑 = 75)

0.655 ± 0.044 158.212 ± 0.846 0.551 ± 0.032 31.619 ± 0.484

[5 3 3]
(𝐿 = 5760, 𝑑 = 45)

1.160 ± 0.077 399.256 ± 0.455 0.498 ± 0.038 38.148 ± 1.024

[3 3 3]
(𝐿 = 9600, 𝑑 = 27)

2.349 ± 0.079 1073.105 ± 1.004 0.651 ± 0.046 45.651 ± 0.197

[3 2 3]
(𝐿 = 14400, 𝑑 = 18)

3.785 ± 0.136 2389.648 ± 2.276 0.684 ± 0.019 51.699 ± 1.374

[3 2 2]
(𝐿 = 21600, 𝑑 = 12)

6.917 ± 0.290 5355.717 ± 0.767 0.773 ± 0.062 66.172 ± 1.682

[2 2 2]
(𝐿 = 32400, 𝑑 = 8)

14.125 ± 0.219 12026.990 ± 3.598 0.881 ± 0.026 91.746 ± 4.197
Although the dimension 𝑑 of the sequence can also affect the compu-
tational complexity to some extent, it is experimentally demonstrated
that the computational complexity of self-attention mainly depends on
the length of the sequence 𝐿.

4.2.2. Contribution of structural distilling layer
In terms of spatial complexity, we analyzed in Section 3.6, that

the superposition of multiple self-attention mechanisms can lead to
a significant increase in memory usage, which limits the application
of self-attention mechanisms in MRI research to some extent. The
structural distilling operation ensures the accuracy of the model and
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significantly reduces the memory usage, allowing self-attention to han-
dle large-scale data. The performance improvement of the distilling
operation was validated by pruning structural distilling in the model.
Here, we evaluated the performance mainly in terms of memory usage.
We conducted experiments with a batch size of 16 and patch size
of 5 × 3 × 5. The experimental results are presented in Tables. 7
and 8, respectively. Table 7 shows the pruning of the distilling for
the BraInf model. Table 8 shows the pruning of the distilling for the
dot-product self-attention model. As shown in Table 7, the distilling
operation substantially reduces the memory usage of the subsequent

self-attention operations, whereas the overall memory usage without
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Fig. 10. Growth of computational cost with respect to sequence length for two types of self-attention mechanisms. (a) time usage, (b) memory usage.
Table 7
The impact of distilling on memory usage in BraInf.
Memory usage
(MiB) (mean ± std)

Model block (without
distilling)

Model block Memory usage (MiB)
(mean ± std)

1544.143 ± 1.736 ProbSparse attention 1 ProbSparse attention 1 1491.239 ± 1.222
Multilayer perceptron Multilayer perceptron
N/A Structural distilling

1549.785 ± 1.630 ProbSprase Attention 2 ProbSparse attention 2 311.091 ± 0.574
Multilayer perceptron Multilayer perceptron
N/A Structural distilling

1544.436 ± 2.050 ProbSparse attention 3 ProbSparse attention 3 59.937 ± 13.341
Multilayer perceptron Multilayer perceptron

Feed-Forward neural network
Table 8
The impact of distilling on memory usage in Dot-Product models.
Memory usage
(MiB) (mean ± std)

Model block (without
distilling)

Model block Memory usage (MiB)
(mean ± std)

5690.883 ± 7.951 Dot-Product Attention 1 Dot-Product Attention 1 5924.666 ± 0.279
Multilayer perceptron Multilayer perceptron
N/A Structural distilling

5703.745 ± 0.590 Dot-Product Attention 2 Dot-Product Attention 2 348.468 ± 1.477
Multilayer perceptron Multilayer perceptron
N/A Structural distilling

5704.566 ± 0.954 Dot-Product Attention 3 Dot-Product Attention 3 𝜖
Multilayer perceptron Multilayer perceptron

Feed-Forward neural network
Table 9
Classification performance of different distilling methods.
Task NC/AD classification

Model ACC (mean ± std, %) SEN (mean ± std, %) SPE (mean ± std, %) PRE (mean ± std, %)

Original distilling 95.63 ± 2.50 94.10 ± 5.54 97.28 ± 2.10 97.08 ± 2.20
Structural distilling 97.97 ± 1.41 97.74 ± 2.19 98.17 ± 2.85 98.16 ± 2.68

Task NC/MCI Classification

Model ACC (mean ± std, %) SEN (mean ± std, %) SPE (mean ± std, %) PRE (mean ± std, %)

Original distilling 87.72 ± 4.54 89.24 ± 5.08 86.23 ± 6.09 86.39 ± 6.39
Structural distilling 91.89 ± 7.22 90.66 ± 7.78 93.01 ± 8.43 92.69 ± 8.21
distilling remains high. This is also true for the dot-product model
shown in Table 8, where 𝜖 denotes very small memory usage.

4.2.3. Classification performance comparisons between structural distilling
and original distilling

To validate the effectiveness of our proposed structural distilling
in three-dimensional MRI data, we compared its classification perfor-
mance with the original distilling method described in Section 3.6,
11
as shown in Table 9. In both the NC/AD and NC/MCI classification
tasks, all classification metrics of the proposed structural distilling
method were higher than those of the original distilling method. The
classification performance improved by 3.26% on average. It was fully
demonstrated that the structural distilling method, which considers
spatial information and preserves more features, is more applicable to
MRI data than the conventional distilling method.



Computers in Biology and Medicine 147 (2022) 105737J. Zhu et al.
4.3. Limitations and future work

Although the model has impressive classification performance, there
are two drawbacks at this stage of the study: (1) Fixed patch size. In our
implementation, the three-dimensional patch of the feature extraction
session had a fixed size of 5 × 3 × 5. Since the structural changes in each
region caused by brain diseases are not of a fixed size, it is theoretically
more appropriate to use a dynamic patch size. In the future, we will
attempt to develop a multiscale patch-size self-attention mechanism
to make the network dynamic and further enhance the generalization
ability of the model. (2) Lack of multiple data modalities. Current
studies on brain diseases have used multimodal imaging data [63–65].
Compared with a single MRI modality, multimodal imaging data can
provide more information, which can further improve classification
performance. Therefore, subsequent studies will try to model mul-
timodal brain data, such as functional MRI [66], Positron Emission
Tomography (PET) [67], etc., to achieve better performance.

The self-attention model showed good classification performance
on the ADNI dataset. In future works, we hope to further utilize this
architecture for lesion analysis. Future studies should aim to identify
relevant pathogenic brain regions and extract relevant features from
patients’ MRI data to provide more reliable scientific evidence for
exploring the pathological causes of psychiatric disorders. We validated
the excellent classification performance of the model for AD in our
experiments. We believe that the proposed model can be easily gen-
eralized to other psychiatric disease classification problems, providing
a new method for future research on MRI data analysis of psychiatric
diseases.

5. Conclusion

In this paper, we proposed an efficient model based solely on
the self-attention mechanism, called BraInf, to classify MRI data of
Alzheimer’s disease. The multihead ProbSparse self-attention mecha-
nism used in this study significantly reduces computational complexity,
making it possible to apply the self-attention mechanism to high-
dimensional MRI data. The structural distilling layer further performs
feature down-sampling to retain the key features while reducing the
computational cost. The NC/AD and MCI/AD classification accuracies
of the proposed architecture on the ADNI dataset were 97.97% and
91.89%, respectively, outperforming other state-of-the-art methods.
The experimental results of various ablation studies also illustrate the
efficient representation learning capability of the BraInf architecture
in brain sMRI data, which provides new ideas and methods for the
application of deep learning in the study of brain diseases.
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